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CONNECTIVITY FOR RIGIDITY

GYULA NAGY and JÁNOS KATONA

Abstract. We characterize the rigidity of the finite part of the parallelogram tiling
using some diagonals of the parallelograms as bracing elements. As a consequence
of this result we obtain the smallest number of the bracing elements. Our result
useful from an algorithmic point of view.

1. Introduction

Frameworks consist of rigid rods and rotatable joints. Consider the framework
with white rods on the left hand side in Fig. 2. The framework could deform,
as pictured in the Fig. 2 with gray rods. If we wish to prevent this motion and
make the framework rigid, we may use diagonal braces, one such a diagonal brace
is illustrated in one of the squares in the left hand side in Fig. 2. It makes no
difference which of the two diagonals we use in the square.

Definition 1.1. A framework is rigid if any continuous motion of the joints
that keeps the length of every rod fixed, also keeps the distance fixed between
every pair of joints.

The concept of the rigidity and infinitesimal rigidity are closely related.
The infinitesimal rigidity of a rod-joint framework can be formulated as a rank

condition of the rigidity matrix, see [10]. The infinitesimal rigidity implies the
rigidity, the converse is not true. Our framework in Fig. 1 is rigid but not infin-
itesimally rigid, because there is an infinitesimal motion to the direction of the
arrows. We can characterize infinitesimal rigidity better than the rigidity of a
framework. Generally we have to determine the rank of the rigidity matrix of
the framework. But Bolker and Crapo [1] gave a graph theoretical model for
square grid framework. There exist some important results in [2],[3],[4],[5],[7],[9],
for square grid framework if we use long diagonals, cables or struts, or we allow
some ”holes” in the grid. To find the rank of the rigidity matrix requires O

(

(lm)3
)

operations for the l×m square grid framework, but this number decreases to O(lm)
the consequence of the graph theoretical model. We give a similar model for par-
allelogram tiling. It is easy to see that planar square grids with diagonals behave
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very similarly to planar grids of parallelograms which form the same topology. In
this paper we solve the general problem of rigidity of tiling of parallelograms.

Consider a rod-joint framework in the form of an l ×m rectangular grid. This
framework is not rigid. How can we add diagonal braces to some of the squares as
to make a framework rigid? This problem could be solved in generally by a result
of Maxwell [6],and a good characterization of grid bracing problem was given by
Bolker and Crapo [1]. A similar problem was solved in [4], using long diagonal
braces.

Figure 1

We give a new proof of Bolker–Crapo’s theorem. Furthermore we also consider
the parallelogram tiling. To make the parallelogram tiling rigid we use bracing
elements along one of the diagonals of some parallelograms.

1.1. s-graph

Define the s-graph (skeleton graph) of the framework F as follows: the nodes of
the s-graph correspond to the joints of framework F and there is an edge between
two nodes of the s-graph if and only if there is a rod between the corresponding
two joints of the framework.

Consider a rod-joint framework in one dimension (on a line or on a circular
arc with radius r). In case of circular arc, the lengths of the rods less than 2r

considering the infinitesimal motions.

Lemma 1.2. A framework is rigid in one dimension if and only if its s-graph
is connected.

Proof. The connectivity of the s-graph means we can get from every node to
every other node along edges of the graph. If the s-graph is connected then the
joints of the framework can move only together to the same direction. If the s-
graph is not connected then the frameworks corresponding to its components can
move independently of each other, so the framework is not rigid. �

Consider the usual square tiling (square grid) on the plane with unit edges in
which its squares are in rows and in columns. A finite set of those unit square
is said to be a square system. A square system is semi-convex if the intersection
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of the square system and every line that is parallel with the translation vector of
the rows or parallel with the translation vector of the columns is a segment. We
generally mention l ×m square grid or rectangular grid frameworks, which have
exactly l columns and in each column there are exactly m squares. The notion of
the semi-convex square system framework is more general than an l ×m square
grid framework. We can see a semi-convex square system framework the left hand
side in Fig. 2 with white rods.

Let us correspond joints to the vertices of the squares and correspond rods the
sides of the squares. Hence we obtain a square system framework. By inserting
braces in the diagonals of some squares we want to make the semi-convex square
system framework rigid.

The horizontal rods in the column Xi are parallel with each other during any
motion of the joints so they can be denoted by vector Xi. Similarly, the vertical
rods in the row Yj are parallel with each other during any motion of the joints so
they can be denoted by vector Yj see( Fig. 2). It is not disturbing if denote the
rows and columns by these vectors as well. Thus we can describe the deformation
of the square system framework with some vectors disregarding the translation
of the framework. These vectors form the so-called descriptive framework. The
vectors of the descriptive framework can rotate around the origin independently
with respect to each other if there is no diagonal brace in the framework. In
Fig. 2, we can see a square system framework that is deformated, because it has
not enough number of diagonal braces.

Figure 2

There is only one diagonal brace in column X2 and in row Y2. The descriptive
framework of this semi-convex square system framework can be seen on the top of
the right hand side of Fig. 2.
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2. The rigidity of the semi-convex square tilings

We can get to the so-called auxiliary framework of the framework if we correspond
joints to the vectors of the descriptive framework. The joint Xi corresponds to
vector Xi, the joint Yj corresponds to vector Yj and there is a rod between joint
Xi and joint Yj if there is a diagonal brace in the corresponding square in column
Xi and row Yj . The auxiliary framework of the square system framework is on
the top of the right hand side of Fig. 2 around the descriptive framework.

The auxiliary graph of the braced square system framework is a bipartite graph.
The node Xi in the first node class corresponds to vector Xi, and the node Yj in
the second node class corresponds to vector Yj , and an edge XiYj exists if and
only if there is a diagonal brace in the square determined by the column Xi and
the row Yj . In this case vector Xi is perpendicular to vector Yj in the descriptive
framework. It is trivial that the s-graph of the auxiliary framework is isomorphic
to the auxiliary graph of the framework. We can see the bracing graph or the
auxiliary graph of the framework on the bottom of the right hand side of Fig. 2,
below the descriptive framework.

If the auxiliary framework of the square system framework is rigid then every
vector Xi is perpendicular to every vector Yj in the descriptive framework. In this
case the square system framework is rigid in the plane.

Theorem 2.1. A semi-convex square system framework with some diagonal
braces is rigid if and only if its auxiliary graph is connected.

Proof. The joints in the auxiliary framework are on a unit circle and there
is some rod between them. The length of these rods is π

2
. The square system

framework is rigid in the plane if and only if the auxiliary framework is rigid on
the circle. This framework lies on a one dimensional circular arc. Using Lemma 1.2
this framework is rigid if and only if its s-graph is connected. But this s-graph is
isomorphic to the auxiliary graph, because their nodes correspond to the columns
and to the rows of the square tiling framework, and their edges correspond to the
diagonal braces.

If the bracing graph of the square grid framework is not connected, then the
square grid framework is not rigid, see the graph in the left hand side in Fig. 2.
We can see a result of a possible motion of the joints on the Fig. 2, since X2 Y2 is
an independent component of the bracing graph. �

This result can be generalized in several directions.

Corollary 2.2. Theorem 2.1 is true for not degenerated parallelogram tilings
(such a tiling consists of parallelograms and its s-graph is isomorphic with the s-
graph of a square system framework) instead of square tiling, but it is not true for
degenerated parallelogram tilings.

In [8], Radics and Recski wrote citing W. Whiteley, private communication,
June 1990: ”it is easy to see that all the results in square grid frameworks are
almost the same if we have a planar grid of parallelograms. The only changes will
arise when we construct the linear equations or inequalities because the coefficients
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depend on the size of the parallelograms.” In this case the s-graph of the grid of
parallelograms is isomorphic with the s-graph of the square system framework.

Corollary 2.3. We regard the tiling with regular triangles as a non-degenerated
tiling with diagonal braces in each parallelogram. Hence the framework of tiling
with regular triangles is rigid.

3. The rigidity of the parallelogram tiling

Now we describe the rigidity of a more general parallelogram system framework
when its s-graph is not isomorphic with an s-graph of the square system framework.
Define an equivalence relation between the rods. Let us call two opposite rods of
a parallelogram equivalent. Hence every rod of the parallelogram system is in one
of the equivalence classes.

There is a segment between the middle points of the opposite rods of the paral-
lelogram. A broken line is a maximal line that consists of those segments that are
between rods which are in the same equivalence class. Let us take the finite parts
of the parallelogram tiling and assume that it is semi-convex, we illustrate them
by thin black line. The rods which are in the same equivalence class can move
only parallel to each other. If two broken lines that represent different equivalence
classes, and the rods of the classes are parallel also, then the broken lines do not
intersect each other. If they could intersect each other, then the all sides of paral-
lelogram in the intersection would be parallel, hence this parallelogram would be
degenerate.

The motion of a rod is independent from the motion of the other rods that
are different equivalence class. This means, if there is no diagonal brace in the
framework, then their vectors can circulate around the origin independently from
each other. Hence the motion of these rods can be characterized by a vector.
Thus we can describe the motion of the parallelogram system framework with
some vectors disregarding the congruent transformations of the framework. These
vectors form the descriptive framework of the parallelogram system framework.
We can see the descriptive framework of a parallelogram system framework on the
top of the right hand side of Fig. 3, the broken lines are denoted by thin black
line.

Similarly to the square system framework we can construct the auxiliary frame-
work of the parallelogram system framework. The s-graph of the auxiliary frame-
work will be the auxiliary graph of the braced parallelogram system framework.
We can see the auxiliary graph of the parallelogram system framework on the
bottom of the right hand side of Fig. 3.

Theorem 3.1. A non degenerate semi-convex parallelogram system framework
with some diagonal braces is rigid if and only if its auxiliary graph is connected.

Proof. Similar to proof of Theorem 2.1. �

The result of Theorem 2.1 and 3.1 is useful from an algorithmic point of view.
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Figure 3

Corollary 3.2. The number of the joints is O(lm) in case of the l×m square
grid and the size of the auxiliary graph of the framework, and hence the time com-
plexity of the proposed algorithm is O(lm), because the maximal number of the steps
of checking connectivity is the maximal number of the edges in the graph, while

according to Maxwell the time complexity would be O
(

(lm)
3
)

, if we use Gaussian
elimination for deciding the rank of the rigidity matrix. In case of the parallelogram
tiling the size of the auxiliary graph of the framework, and hence the time com-
plexity of the proposed algorithm is O(r2), where r is the number of the different
equivalence classes.

Acknowledgement. We would like to thank András Recski for communicating
the problem and useful discussions. This research was supported by the Founda-
tion for the Hungarian Science and by the National Science Foundation (grant
number: OTKA T 67651).

References

[1] E. D. Bolker and H. Crapo, Bracing rectangular frameworks I, SIAM J. Appl. Math., 36,
No.3 (1979), 473-490.

[2] Zs. Gaspar, N. Radics and A. Recski,Rigidity of square grids with holes, Computer Assisted
Mechanics and Engineering Sciences, 6 (1999) 329-335.

[3] H.N. Gabow and T. Jordán, How to make a square grid framework with cables rigid, SIAM

J. Computing, 30, 2, 2000, pp. 649680.
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